Cohomological finiteness conditions in Bredon cohomology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomological Finiteness Conditions in Bredon Cohomology

We show that soluble groups G of type Bredon-FP∞ with respect to the family of all virtually cyclic subgroups of G are always virtually cyclic. In such a group centralizers of elements are of type FP∞. We show that this implies the group is polycyclic. Another important ingredient of the proof is that a polycyclic-by-finite group with finitely many conjugacy classes of maximal virtually cyclic ...

متن کامل

Finiteness of certain local cohomology modules

Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...

متن کامل

Steenrod ∪ i - products on Bredon – Illman cohomology

Let G be a topological group acting on a space X. We construct a family of Steenrod’s ∪i -product [Ann. of Math. (2) 48 (1947) 290] on the Bredon–Illman cochain complex of X [Quart. J. Math. Oxford Ser. (2) 47 (1996) 199]. As corollaries, we get the existence of Steenrod squares on Bredon– Illman cohomology with appropriate coefficients as well as the triviality of the Gerstenhaber bracket indu...

متن کامل

Bredon-style homology, cohomology and Riemann–Roch for algebraic stacks

One of the main obstacles for proving Riemann–Roch for algebraic stacks is the lack of cohomology and homology theories that are closer to the K-theory and G-theory of algebraic stacks than the traditional cohomology and homology theories for algebraic stacks. In this paper we study in detail a family of cohomology and homology theories which we call Bredon-style theories that are of this type ...

متن کامل

On the Absence of Cohomological Finiteness in Wreath Products

The wreath product W = A i T, where A ^ 1, is of type FP2 if and only if T is finite and A is of type FP2. 1991 Mathematics subject classification (Amer. Math. Soc): primary 20E22, 20F05, 20J05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2010

ISSN: 0024-6093

DOI: 10.1112/blms/bdq088